
Heuristic Algorithms on Flexible Flow Shop with
Unrelated Machines, Setup Time, Limited Storage

Capacity, and Specification Constraint

An-Che Liang , Wei-Hsiang Huang, Debbie Huang, You-Ming Yeh, Ling-Chieh Kung
Department of Information Management

National Taiwan University

Abstract

In this paper, we address the production-planning challenge in a multi-stage flexible
flow shop with unrelated machines, sequence-dependent setup times, limited stor-
age capacity, and product-specification constraints. We first formulate the problem
as a mixed-integer linear program (MILP). Recognizing that solving large-scale
instances to optimality is computationally prohibitive, we then propose two greedy
heuristics: Simulated Annealing–based Greedy Allocation (SAGA) and Linear
Relaxation–based Greedy Allocation (LRGA). Extensive computational experi-
ments show that SAGA and LRGA achieve average optimality gaps of 8.44% and
23.34%, respectively, as long as the storage capacity of each stage are not too
limited, while delivering runtimes orders of magnitude faster than leading MILP
solvers—enabling fast, reliable production scheduling in practice. In a real-world
case study spanning 141 days with 92 orders, SAGA and LRGA eliminate all
delayed deliveries and boost the on-time delivery rate from 9.1% under current
practice to 69.7% and 53.0%, respectively.
Keywords: flexible flow shop, unrelated machines, limited storage capacity, speci-
fication constraint, simulated annealing, linear relaxation.

1 Introduction

Manufacturers worldwide compete in markets
where on-time delivery is as crucial as product
quality. Conventional planning methods, which
often rely on heuristic “rules of thumb,” suffer
two major drawbacks, which are tardiness risk
and excess inventory. Tardiness risk arises when
an order finishes after its promised date, causing
it to miss its delivery window and may forfeit
sales. On the other hand, excess inventory hap-
pens when an order completes too early, and thus
surplus goods occupy storage, which ties up capi-
tal and driving up holding costs.

This study is motivated by a real-world case
with Shang Tian Aluminum Co., a manufacturer
specializing in aluminum windows and doors,
which approached us to address their production
scheduling challenges. By analyzing their histori-

cal order data and factory resources, we gained in-
sights that enabled us to generalize our approach
for broader applications in production planning,
which may help small to medium enterprises in
the manufacturing industry.

Most factories operate under a flow-shop model,
in which jobs move through successive stages
(e.g., assembly, inspection, packaging). Each
order may have distinct processing times, setup
times, storage-space requirements, and specifi-
cation constraints that make manual scheduling
increasingly complex.

To address these challenges, we first formulate
the scheduling problem as a mixed-integer linear
program (MILP) that minimizes the combined
penalties for earliness and tardiness. Because the
MILP is NP-hard, we then introduce two greedy-

2025 International Conference and Annual Meeting of the Operations Research Society of Taiwan, Undergraduate
Thesis Competition (ORSTW 2025).



based heuristic algorithms designed to generate
near-optimal solutions within practical time lim-
its.

The remainder of this paper is organized as fol-
lows. Section 2 reviews related literature. Sec-
tion 3 formulates our problem as a mixed-integer
linear program. Section 4 introduces the pro-
posed heuristic algorithms. Section 5 evaluates
the performance of heuristic algorithms. Section
6 presents a real-world case study involving with
Shang Tian Aluminum Co. Finally, Section 7
concludes the paper.

2 Literature review

The problem in our study is a multi-stage flexible
flow shop with unrelated machines, specification
constraint, independent setup time, and storage
space limits problem. In the operation research
field, multi-stage flow shop problem is a classic,
long-standing, and extensively studied NP-hard
problem. Many previous studies on multi-stage
production planning problems have used linear
programming to develop planning solutions.

Gabbay (1979) [2] studies a multi-stage, multi-
item, capacitated production and inventory plan-
ning problem. The author proposes a hierarchical
planning framework. It first solves an aggregate
capacity planning problem using linear program-
ming under certain cost assumptions, then de-
composes the solution into detailed item-level
production schedules. He develops both a one-
pass algorithm and a hierarchical procedure that
reduces detailed forecasting needs, divides deci-
sions between tactical and operational levels, and
remains computationally efficient without sacri-
ficing optimality.

Tan et al. (2018) [5] addresses a two-stage flex-
ible flow shop problem where the first stage in-
volves batch processing machines. The focus
is on minimizing makespan while considering
batching constraints. The authors propose a hy-
brid scheduling approach combining decomposi-
tion techniques and variable neighborhood search
(VNS) to efficiently solve the problem.

However, because we have setup time, it’s natural
for the model to generate binary variables, turn-
ing the model into an integer program (IP), which
makes it infeasible to solve using purely mathe-
matical programming. In such cases, where the
problem becomes too complex to solve efficiently
with standard mathematical approaches, heuris-
tics like the listing algorithm are often employed.
These heuristics provide a practical alternative,
offering feasible solutions for flow shop problems

by simplifying the decision-making process and
reducing computational complexity.

Nawaz et al. (1983) [4] studied the flow-shop
sequencing problem, where multiple jobs must
be processed in the same machine order, aim-
ing to minimize makespan. They propose a
heuristic algorithm based on prioritizing jobs with
higher total processing times. The algorithm
builds the job sequence step by step, using a
curtailed-enumeration strategy to efficiently find
high-quality solutions.

Danneberg et al. (1999) [1] studies permutation
flow shop scheduling problems where jobs be-
long to different groups and can be processed in
batches, with limited batch size and setup times
that depend on the group. They focus on mini-
mizing either the makespan or the weighted sum
of completion times. They propose and com-
pare a variety of constructive heuristics and itera-
tive local search algorithms, including standard
metaheuristics like simulated annealing and tabu
search, as well as multilevel search procedures
using different neighborhood structures.

But because we have complications like specifica-
tion constraints, unrelated machines, and storage
limits in our problem, using just the listing al-
gorithm isn’t effective enough. Combining the
above, we decided to develop a solution that
integrates mathematical programming with the
heuristic algorithm, aiming to achieve both low
cost and low computation time. Therefore, our
problem is worth of investigation.

3 Model

In this section, we first describe the general prob-
lem in Section 3.1. We then present a general
transformation method to transform general prob-
lems into our abstract formulation in Section 3.2.
Then in Section 3.3, we present our mathematical
formulation of our model setting.

3.1 Problem description

In a typical flow shop problem, every order passes
through the same set of stages. However, due to
the presence of specification constraints in our
problem, different machines within each stage
may handle different tasks. As a result, the stages
that each order needs to go through may vary.
Below is the definition of our problem:

There are multiple stage groups on the flow line.
Each stage group contains at least one stage. The
stages within a stage group are independent of
one another and can process tasks in parallel, but
they share the same stage group storage space.

2



The planning process is divided into several peri-
ods, and each stage has a capacity limit in each
period. In our problem, the capacity is measured
in daily working time (minutes). After complet-
ing a stage, the produced order is transported
to the next required stage for further processing.
Each order has a due period. Early or late deliver-
ies will incur corresponding earliness or tardiness
costs. Each order also has its own specification
constraint, which defines the required stages it
must go through. Each stage group will only have
one stage selected for any given order. The num-
ber of stages that each order needs to go through
is equal to the number of stage groups. Produc-
ing an order at a stage incurs a specific setup
time. If a stage processes an order during any
period, it will consume the associated setup time
for that order at that stage. We use Figure 1 to il-
lustrate one example of a production process with
three stage groups and six stages. In the example,
stage group 1 has two stages 1-A and 1-B; stage
group has three stages 2-A, 2-B, and 2-C; and
stage group 3 has two stages 3-A and 3-C. The
specification constraint of an order i′ needs to be
processed at stages 1-A, 2-B, and 3-A.

3.2 Problem transformation

Based on the above problem definition, we can
transform the flow shop problem with specifica-
tion constraints into a standard flow shop problem
through data preprocessing. In our transforma-
tion, we can flatten the stage groups to stages one
by one, and assign 0 processing load at stages that
an order i won’t go through, that is, the stages
other than the specification constraint of order
i. In the meantime, we set both the setup cost
and storage usage to 0. In the original problem,
we would imagine the order i′ being transferred
to stage 2-B after being completed in stage 1-A,
then processed, and subsequently transferred to
stage 3-A. However, in Figure 2, we assign or-
der i′ 0 processing load at stages 2-A and 2-C,
and set both the setup cost and storage usage at
stages 2-A and 2-C to 0. After stage 1-A com-
pletes its work, the order is sequentially routed
through stage 2-A, 2-B, and 2-C, undergoing vir-
tual processing at 2-A, actual processing at 2-B,
and virtual processing again at 2-C, before be-
ing sent to stage 3-A. Through this design, we
successfully convert the flow shop problem with
specification constraints into a standard flow shop
problem.

Figure 1: Stage groups example

Under this problem setting, our objective is to
develop an effective production scheduling plan
that enables the factory to determine, for each
period t and stage s, which orders i should be
processed, in order to minimize the total cost of
earliness and tardiness. Let the indices and sets
be defined as follows. Let I = {1, ..., I∗} de-
note the set of orders, T = {1, ..., T ∗} denote
the set of periods, S = {1, ..., S∗} denote the
set of stages, and G = {1, ..., G∗} denote the set
of stage groups. For each stage group g ∈ G,
let Sg ⊆ S denote the set of stages belonging to
stage group g. Let δ ⊆ S represent the set of final
stages within each stage group. In the following,
we present the model. We use uppercase letters to
denote sets and parameters, and lowercase letters
for decision variables.

3.3 Mathematical formulation

The objective function aims to minimize the total
delivery cost, which includes both earliness and
tardiness penalties. Each order i has a scheduled
due period Di. If the order is delivered early or
late, it incurs a penalty. Specifically, Pi is earli-
ness penalty per period for order i, Qi is tardiness
penalty per period for order i, zi is number of
periods early that order i is delivered, wi is num-
ber of periods late that order i is delivered, α is
weight of earliness penalty in the objective func-
tion, and β is weight of tardiness penalty in the
objective function. To minimize the total delivery
cost, the objective function is defined as

min α
∑
i∈I

Pizi + β
∑
i∈I

Qiwi,

this formulation allows the model to flexibly pri-
oritize early delivery or on-time delivery based
on the values of α and β.

During production and transportation at each
stage, several constraints must be considered. We
first focus on the constraints related to production

3



Figure 2: Transformed stages example

and transportation, which are

hnext
tsi = hprev

tsi +
xtsi

Ris
−

xt(s+1)i

Ri(s+1)

∀t ∈ T,∀s ∈ S \ {S∗},∀i ∈ I (1)

hnext
tS∗i = hprev

tS∗i +
xtS∗i

RiS∗
− cit

∀t ∈ T,∀i ∈ I (2)

hprev
(1)si = 0 ∀s ∈ S,∀i ∈ I (3)

hprev
(t+1)si = hnext

tsi

∀t ∈ T \ {T ∗}, ∀s ∈ S,∀i ∈ I. (4)

In these constraints, Ris is the required capacity
for stage s to produce order i, xtsi is the capac-
ity invested by stage s in period t for producing
order i, hprev

tsi is the completion rate of order i at
stage s at the beginning of period t, and hnext

tsi is
the completion rate of order i at stage s at the end
of period t. Constraint (1) ensures the balance be-
tween the input, output, and the completion rate
of each order at every stage. The value of hnext

tsi
equals hprev

tsi plus the progress made during this
period minus the progress transferred to the next
stage. Constraint (2) applies to final stage and en-
sures the balance between the input, output, and
the delivery progress of the order. Constraint (3)
initializes the completion rate of all orders to zero
at the beginning of the first period. Constraint
(4) ensures that the starting completion rate of a
given order at a stage in the current period equals
the ending completion rate of the previous period.
These constraints together govern how production
progresses over time and how orders flow through
the stages toward completion and delivery.

Next, we focus on the constraints related to pro-
duction and setup cost, which are∑

t∈T

xtsi = Ris ∀s ∈ S,∀i ∈ I (5)

xtsi ≤ Mytsi ∀t ∈ T,∀s ∈ S,∀i ∈ I (6)∑
i∈I

xtsi +
∑
i∈I

Aisytsi ≤ L∀t ∈ T,∀s ∈ S. (7)

In these constraints, Ais is the setup cost required
for stage s to produce order i, L is the capacity
limit of each stage per period, M is a sufficiently
large constant used to enforce constraints only
when necessary, ytsi ∈ 0, 1 is a binary decision
variable indicating whether stage s produces or-
der i in period t. Constraint (5) ensures that the

total production across all periods for each order
at each required stage must meet the demand, i.e.,
the required production load must be satisfied.
Constraint (6) ensures that production capacity
xtsi can only be allocated if ytsi = 1. This is
enforced using the big-M method. Constraint (7)
ensures that the total capacity used by a stage in
a period, including both the production load and
the setup cost, does not exceed the stage’s capac-
ity limit L. Together, these constraints regulate
how stages allocate capacity, trigger setup costs,
and stay within production limits over time.

Next, we address the constraints related to stage
groups, which are

xt(s+1)i

Ri(s+1)
≤ hprev

tsi

∀t ∈ T, ∀s ∈ δ \ {S∗},∀i ∈ I (8)∑
s∈Sg

∑
i∈I

hprev
tsi Kis ≤ Hg ∀t ∈ T, ∀g ∈ G. (9)

In these constraints, Kis is the storage space re-
quired by order i at stage s, Hg is the storage
capacity limit of stage group g, Sg is the set of
stages in stage group g, δ is the set of final stages
within each stage group. Constraint (8) means,
for each final stage of a stage group, this con-
straint ensures that the input progress at the next
stage (i.e., stage s+ 1) in period t cannot exceed
the completion progress hprev

tsi at the current stage.
This regulates that an order cannot proceed to
the next stage unless it has been completed at
the current one. Constraint (9) ensures that the
total space occupied by all in-process orders at
any given stage group does not exceed its stor-
age capacity Hg. The storage occupied by an
order is assumed to be proportional to its current
progress, multiplied by the order’s specific stor-
age requirement Kis. Summing this across all
relevant stages and orders gives the total space
usage at the stage group. These constraints ensure
that order flow respects processing sequence and
that the shared storage within each stage group is
not exceeded.

4



Then, we consider the constraints related to order
delivery, which are∑

t∈T

cit = 1 ∀i ∈ I (10)

zi ≥ Di −
∑
t∈T

tcit ∀i ∈ I (11)

wi ≥
∑
t∈T

tcit −Di ∀i ∈ I. (12)

In these constraints, Di is the due period for or-
der i, cit is a binary decision variable indicating
whether order i is delivered in period t, zi is the
number of periods by which order i is delivered
early, wi is the number of periods by which or-
der i is delivered late. Constraint (10) ensures
that each order is delivered in exactly one period.
Constraint (11) calculates the earliness of deliv-
ery. If an order is delivered before its due period
Di, then zi will reflect the number of periods it
is early. Constraint (12) calculates the tardiness
of delivery. If an order is delivered after its due
period Di, then wi will reflect the number of pe-
riods it is late. These constraints ensure that each
order is delivered once, and accurately track how
early or late each delivery is, which in turn affects
the penalty costs in the objective function.

Finally, we introduce the variable domain con-
straints, which are

xtsi, h
prev
tsi , h

next
tsi , zi, wi ≥ 0

∀t ∈ T, ∀s ∈ S, ∀i ∈ I (13)
ytsi, cit ∈ {0, 1} ∀t ∈ T, ∀s ∈ S, ∀i ∈ I. (14)

Constraint (13) ensures that the decision variables
xtsi, h

prev
tsi , hnext

tsi , zi, wi are non-negative continu-
ous variables, while constraint (14) ensures that
the decision variables ytsi, cit are binary vari-
ables.

We summarize the complete sets, parameters, and
decision variables in the following tables in the
Appendix: Table 5, Table 6, and Table 7.

4 Algorithm

In this section, we first present the core greedy
procedure for allocating processing time to orders
in Section 4.1. We then introduce two complete
heuristic algorithms: SAGA (Section 4.2) and
LRGA (Section 4.3), which augment the greedy
allocation procedure with different sorting strate-
gies.

4.1 Greedy Allocation procedure (GA)

The core of our heuristic is the Greedy Allocation
(GA) procedure, which sequentially assigns pro-
cessing time and storage space to each order in

a given sequence. GA (Algorithm 1) processes
orders one at a time, finding a feasible schedule
for order i before proceeding to the next, so the
choice of sequence is critical to overall perfor-
mance.

When scheduling order i, GA aims to complete
its final stage precisely at its due date di, thereby
minimizing both earliness and tardiness penalties.
Beginning at stage S in period di, GA performs
a backward pass through each preceding stage s,
computing feasible start and end times while en-
forcing setup durations, specification constraints,
and storage limits. If no feasible schedule ex-
ists for completion at di, GA iteratively shifts the
target completion earlier or later guided by the
relative earliness and tardiness penalty weights
until a valid solution is found.

To compute how much time and space can be al-
located to order i at stage s in period t, we define

calculate_h(t, s, i) →
(
hprev
tsi , hnext

tsi

)
,

where hprev
tsi and hnext

tsi represent the order comple-
tion rate before and after t, respectively. We com-
pute these values using the allocation results of
earlier orders, as detailed in Algorithm 2. Given
these values, function check_residual (Algo-
rithm 4) using time and space limits, subtract-
ing the production time already allocated and the
space occupied, returns the residual processing
time and storage capacity available for allocation.

Since we can know how much time and space
can be allocated to order i at stage s in pe-
riod t, we have to schedule the process stage
by stage according to given period t. In the
schedule_backward function (Algorithm 3),
we tried to start from the last stage and work
backwards, allocating time to order production
at each stage. It is also essential to account
for future space already reserved by the cur-
rent order. For example, if at t = 3 GA oc-
cupies all 10 m2 of residual storage, then at
t = 2 it must recognize that those 10 m2 are no
longer available. We enforce this via the vari-
ables residual_space_higher_bound and
available_space to prevent over-allocation.
Additionally, unsaturated orders from previous
stages may retain storage longer than anticipated;
GA checks that these do not exceed future storage
capacity.

Combining these components yields the GA pro-
cedure, which, for any given order sequence, pro-
duces a feasible production plan. Applying differ-
ent sorting strategies to this sequence gives rise to
our two complete heuristics: SAGA and LRGA.

5



Algorithm 1 GA

1: Input
2: OS orders’ sequence
3: T ∗ number of periods
4: for order ∈ OS do
5: i := order’s id
6: t := order’s due period
7: while t < T ∗ do
8: scheduling_result = schedule_backward(i, t)
9: if scheduling_result is not None then

10: apply_scheduling_result(i, t, scheduling_result)
11: break
12: end if
13: t := t+ step_direction× step_size
14: step_direction := −1× step_direction
15: step_size := step_size + 1
16: end while
17: end for

Algorithm 2 calculate_h

1: Input
2: t plan period
3: s stage_id
4: i order_id
5: snext := the stage_id that this order will go through in the next stage group
6: h_prev := 0 #begin completion ratio
7: for t′ ∈ t do
8: update h_prev based on previously applied xtsi and xtsnexti

9: end for
10: h_next := h_prev #end completion ratio
11: update h_next
12: return h_prev, h_next

4.2 Simulated Annealing based Greedy
Allocation (SAGA)

In SAGA, we use a simulated annealing strategy
on top of our greedy allocation heuristic to en-
hance solution quality. We begin with an initial
sequence of orders sorted by non-decreasing due
dates, then apply the greedy allocation procedure
to produce a feasible schedule whose objective
value we call the “energy” e. At each iteration
k (up to kmax), we perform the following steps:
First, we generate a neighbor sequence by swap-
ping two orders in the current sequence. After
we generate the new sequence, we apply GA to
the sequence and yield energy e′. If e′ < e, we
accept the new sequence. Otherwise, we would
accept with probability

Pk = exp
(
− e′−e

T (k)

)
,

where

T (k) =
kmax

k + 1
.

Whenever a swap is accepted, we set the current
sequence to the new sequence and update e← e′.

We set kmax = 100; after at most kmax itera-
tions, SAGA returns the best production plan it
has found.

4.3 Linear Relaxation based Greedy
Allocation (LRGA)

The MILP formulation delivers exact solu-
tions but becomes computationally infeasible
for medium to large scale instances, as its run-
time grows exponentially with problem size. Al-
though the LP relaxation may yield fractional
(and hence infeasible) schedules, these fractional
variables provide valuable priority information
for the greedy allocation (GA) procedure.

In LRGA, we first solve the LP relaxation to opti-
mality, obtaining fractional decision variables c′it.
We then compute each order’s priority index

ti = max
{
t ∈ T | c′it > 0

}
.

6



Algorithm 3 schedule_backward

1: Input
2: t plan period
3: i order_id
4: allocation_result := {}
5: lists := order’s processing stages in each stage group
6: used_space = 0
7: for stage_id ∈ lists do
8: used_space = 0
9: remaining_process_time = Ris

10: space_ratio = Ris

Kis

11: while t >= 0 do
12: residual_time, residual_space = check_residual(stage_id, t)
13: residual_space_higher_bound = min(residual_space_higher_bound, residual_space)
14: available_space = residual_space_higher_bound− used_space
15: if available_space < 0 then
16: No available space, break the loop
17: end if
18: max_processing_time = min(residual_time−setup_time, available_space×space_ratio)
19: allocated_processing_time = min(max_processing_time, remaining_process_time)
20: if allocated_processing_time > 0 then
21: record the allocated processing time in result
22: remaining_process_time := remaining_process_time− allocated_processing_time
23: used_space = used_space + allocated_processing_time× space_ratio
24: end if
25: t := t− 1
26: if remaining_processing_time ≤ 0 then
27: the work for this stage is done, break the loop
28: end if
29: end while
30: time_worked_in := list of periods that process order i in the future
31: if stage_id is not the last stage then
32: for t′ ∈ time_worked_in do
33: next_stage_id := stage id of the next stage
34: _, max_allowed_space = check_residual(next_stage_id, t′)
35: calculate remaining_blocking_space
36: if remaining_blocking_space > max_allowed_space then
37: The unsaturated order takes up too much space after it has been completed
38: The result is not feasible, return None
39: end if
40: end for
41: end if
42: end for
43: return result

7



Algorithm 4 check_residual

1: Input
2: t plan period
3: s stage_id
4: I∗ number of orders
5: residual_time := time per period #available time at stage s in period t
6: residual_space := space of the stage group #available time at stage s in period t
7: for i ∈ range(I∗) do
8: if stage s process order i at period t then
9: residual_time := residual_time −x[t, s, i]−A[i, s]

10: end if
11: end for
12: for i ∈ range(I∗) do
13: for s′ ∈ stage_group do
14: _, h = calculate_h(t, s′, i)
15: residual_space := residual_space −h×K[i, s]
16: end for
17: end for
18: return residual_time, residual_space

To ensure that the relaxed LP solution remains
a close proxy for the original MILP, it is critical
to choose the smallest possible M that still val-
idates the constraint. Since M appears only in
Constraint (6), we simply set M = L.

Sorting orders in descending order of ti produces
a sequence of orders, which serves as the input
to the GA procedure. Then, the GA procedure is
applied to this prioritized sequence to produce a
feasible production plan.

5 Performance evaluation

To evaluate how SAGA and LRGA performs in
generalize scenario, we compare it with two other
algorithms, an exact mixed-integer solver and a
naïve heuristic algorithm, the performance evalu-
ation is conducted by incorporating three factors.
Below we will describe the experiment setting
in Section 5.1, explain the exact mixed-integer
solver and the naïve heuristic algorithm in Sec-
tion 5.2, and demonstrate the results of the per-
formance evaluation in Section 5.3. A discussion
about computation time of different algorithms is
presented in Section 5.4.

5.1 Experiment Setting

Our experiments are grounded in the actual pro-
duction environment of our industry partner. Be-
cause they plan on a one-day horizon, we set
L = 480 to represent 480 minutes of available
work time per period. We also choose nT =
60, nS = 3, nI = 25, nG = 2, G = ((1, 2), (3)).
All the remaining parameters, such processing
times, setup times, and space requirements—are

elicited through consultation with our partner and
then randomized (see Table 1). Here, the inter-
val notation [m,n] indicates that, during instance
generation, integer values are sampled uniformly
at random from the inclusive range [m,n].

Parameter Value

α 1.0

β 1.0

Di [0, 10]

Ris [120, 180]

Ais [10, 30]

Kis [2, 5]

Pi [10, 20]

Qi [10, 20]

Hg [20, 25]

Table 1: Detailed parameters of the baseline in-
stance.

To compare the impact of different factors: pro-
cessing times, setup times, and space occupancy,
we propose a basic benchmark scenario with all
factors set to their normal levels and generate the
extended 3×2 = 6 scenarios by setting one factor
to its high or low extreme level and other factors
to their normal level, i.e., 2-a indicates a scenario
that orders’ process time is lower than those in
the baseline scenario, and 4-b shows a scenario
that orders’ space occupancy is higher than those
in the baseline. The detailed setting of each sce-
nario is listed in Table 2. For each scenario, we
produce 40 randomized instances.

8



All experiments were run on a remote server with
a 3.0 GHz Intel(R) Core i9-10980XE processor
and 128 GB of RAM. The heuristic algorithms
were implemented in Python 3.10, and the MILP
model was solved using Gurobi Optimizer 12
via the OR-Tools Python package. To ensure a
fair comparison, every algorithm was executed in
single-core.

5.2 An exact mixed-integer solver and a
naïve heuristic algorithm

To evaluate SAGA and LRGA algorithms, we
benchmark them against the exact MILP so-
lution—or, when optimality cannot be proven
within the time limit, against the program’s best
dual bound. For each instance, we solve the MILP
using Gurobi Optimizer with a 3,600 second time
limit on a single CPU core. If Gurobi fails to
prove optimality within this limit, we record its
final dual bound as the theoretical lower bound
for the minimization objective value.

To validate the benefit of our sorting strategies, we
introduce a naïve baseline called Due Date–based
Greedy Allocation (DDGA). DDGA uses the
same greedy allocation (GA) procedure as SAGA
and LRGA but sort the input sequence by as-
cending due dates, so that orders with the earliest
deadlines are always processed first.

5.3 Performance of SAGA and LRGA

Table 3 presents the full results of our evalua-
tion experiments. The values zDDGA, zSAGA, and
zLRGA denote the objective values produced by
the DDGA, SAGA, and LRGA heuristics, respec-
tively. A 3,600 second time limit was imposed on
every algorithm run on all the instances.

Across all scenarios, SAGA achieves an average
optimality gap of 15.78%, while LRGA’s gap is
38.05%. Although these heuristics do not always
reach optimality, they require far less computa-
tion time than the MILP solver (see subsection
5.4 more for details). In contrast, the DDGA base-
line exhibits a 45.44% average gap, confirming
the effectiveness of our sorting strategies.

We observe that in Scenario 4-b (Increased Space
Occupancy), our heuristics exhibit a substantially
larger optimality gap than in the other scenar-
ios. For a representative instance in Scenario 4-b,
where the gap reaches 53.75%. In the MILP solu-
tion, four orders—#5, #6, #2, and #0—are com-
pleted exactly at period 8. By contrast, SAGA
delivers only three orders—#15, #10, and #5—on
time. This difference stems from the greedy al-
location procedure: SAGA allocates all the pro-
duction capacity at the given period to the first

few orders it encounters, causing subsequent or-
ders to finish early or delay. Moreover, under
tight storage space constraints, the GA must en-
force additional feasibility checks, rendering it
overly conservative and limiting its ability to pro-
cess multiple orders concurrently. Nonetheless,
the GA-based heuristics perform well in all other
scenarios.

It is also interesting to compare the performance
the trade-offs between LRGA and SAGA. Over-
all, LRGA achieves a smaller optimality gap
than SAGA but incurs substantially higher run-
time—its time complexity is on the order of
kmax = 100 times that of SAGA. In contrast,
solving the linear relaxation of the MILP prob-
lem within SAGA adds only negligible overhead
to its total compute time.

5.4 Computation time

To analyze the time complexity of SAGA and
LRGA, let nI be the number of orders, nS the
number of stages per order, and nT the number
of time periods. The core GA procedure allocates
each stage of each order across all periods. We
have three sub functions: calculate_h runs in
O(nT ); check_residual runs in O(nInSnT );
and schedule_backward runs in O(nIn

2
Sn

2
T ).

Since schedule_backward is invoked for ev-
ery order–period pair (O(nI nT ) times), the
overall time complexity of the GA procedure is
O(nI nT ) × O

(
nI n

2
S n2

T

)
= O

(
n2
I n

2
S n3

T

)
.

Then the approximate time complexities for the
heuristic algorithms are:

• DDGA: O
(
n2
I n

2
S n3

T

)
.

• SAGA: O
(
kmaxn

2
I n

2
S n3

T

)
, since it executes

GA procedure kmax times.

• LRGA: O
(
n2
I n

2
S n3

T

)
+ O(m3), where m is

the number of functional constraints—solving
a general LP with m constraints by the simplex
method scales as O(m3)[3].

To empirically validate our time-complexity anal-
ysis and benchmark the heuristics against an exact
MILP solver, we design a follow-up experiment
in which only the order count nI varies. Adopt-
ing the baseline parameters from Section 5.1, we
test nI ∈ {5, 10, 15, . . . , 40}. For each value of
nI , we generate 20 random instances and run all
algorithms, and set the computation time limit to
3,600 seconds on all the runs.

9



Scenario Scenario name Ris Ais Kis

1 Baseline - - -
2-a Reduced Process Time [60, 90] - -
2-b Increased Process Time [180, 270] - -
3-a No Setup Time - 0 -
3-b Increased Process Time - [40, 120] -
4-a No Space Occupancy - - 0

4-b Increased Space Occupancy - - [4, 10]

Table 2: The setting of different scenarios.

Average Optimality Gap Average Computing Time (seconds)
Scenario zDDGA

zMILP − 1 zSAGA

zMILP − 1 zLRGA

zMILP − 1 MILP DDGA SAGA LRGA

1 25.85% 6.56% 27.59% 95.26 0.11 8.35 0.49

2-a 14.79% 0.67% 10.77% 0.65 0.09 9.27 0.55

2-b 43.35% 16.11% 21.84% 3600.00 0.24 21.56 0.78

3-a 15.02% 2.52% 6.04% 1.04 0.09 9.40 0.57

3-b 53.65% 18.47% 53.28% 3349.61 0.19 18.05 0.69

4-a 31.51% 6.30% 20.53% 377.90 0.10 10.31 0.57

4-b 133.92% 59.80% 126.29% 927.76 0.10 9.31 0.51

Average 45.44% 15.78% 38.05% 1193.17 0.13 12.32 0.59

Average without 4-b 30.69% 8.44% 23.34%

Table 3: Evaluation result of all scenarios.

Figure 3: Mean computing time for each algo-
rithm

Figure 4: Mean computing time for each heuristic
algorithm

Figure 3 confirms that the exact MILP solver’s
runtime grows exponentially (2n), whereas all
three heuristics scale in polynomial time. In Fig-
ure 4, SAGA is shown to be roughly 100× slower
than DDGA and LRGA; nonetheless, even for
n = 40, SAGA completes in under 10 minutes,
which remains acceptable for daily planning. For
larger order volumes, LRGA’s superior scaling
makes it the more efficient choice.

10



6 Case Study

To benchmark SAGA and LRGA against the man-
ual planning procedures common in traditional
manufacturing, we partnered with an aluminum
window manufacturing company for a real-world
case study. Section 6.1 provides an overview of
the factory’s operations. Section 6.2 describes
the production data collected from our collabora-
tor. Finally, Section 6.3 compares the schedules
generated by our heuristics with the company’s
historical, manually planned production results.

6.1 Factory overview

The collaborating company specializes in produc-
ing high-quality aluminum windows for construc-
tion projects across Taiwan, with its main manu-
facturing facility located in Taichung. Given the
large volumes they must deliver, precise schedul-
ing is vital: early deliveries create extra handling
and storage burdens on site, while late shipments
disrupt overall construction timelines. Conse-
quently, accurate production planning is critical
to their business success.

The manufacturing process comprises five stages:
cutting, drilling, assembly, mounting, and packag-
ing. Although the factory also handles upstream
and downstream tasks—such as raw-material pro-
curement and final delivery—this case study fo-
cuses exclusively on in-factory operations.

In the cutting stage, the facility uses ma-
chines capable of both 45° and 90° angu-
lar cuts. For drilling, it employs two types
of machines—air-pressure (pneumatic) and oil-
pressure (hydraulic)—each designed to accom-
modate specific aluminum types. A detailed
overview of the production flow is shown in Fig-
ure 5.

6.2 Data description

The collaborating company provided daily order
records from October 2024 through mid-February
2025, covering 141 days. Each day’s data is for-
matted as shown in Tables 8 and 9 in Appendix.
However, the raw records omit several critical
details—processing times for each window at ev-
ery stage, which machine should each windows
go through at stages with specification constraint,
setup times, and how much space would one win-
dow occupy in the storage, although these factors
apply in their manufacturing environment, they
were not systematically documented. After clean-
ing and consolidating the data, we extracted 92
complete orders, including each order’s, due date,
actual delivery date, and the number of windows
per order.

Based on interviews with our collaborating com-
pany, we adopt the following assumptions: each
window requires 15 minutes of processing at ev-
ery stage plus a 5-minute setup time per order;
in the absence of precise data, we assume a 50%
split between the two specification categories dur-
ing cutting and drilling; and each window occu-
pies 0.2 m3 of storage, given approximately 40 m3

of available space at each stage.

Thus, we reformatted the historical data to con-
form to the structure presented in Section 3 into
one instance, for simplicity, we set α = 1 and
β = 1, further more Pi = 1 and Qi = 1 for all
orders i. We call this instance as the real-world
instance.

6.3 Comparison with historical production
plans

In Table 4, we compare SAGA and LRGA against
manual planning on our real-world instance on
the proportion on on-time, early and tardy de-
livery. Both heuristics dramatically outperform
the manual approach, achieving on-time deliv-
ery rates of 69.7% (SAGA) and 53.0% (LRGA)
versus just 9.1% for manual planning. This im-
provement stems from our methods’ ability to ac-
count for multiple order attributes simultaneously
and schedule nearly 100 orders at once—even
experienced planners might be overwhelmed.

However, the partner-provided dataset may not
fully capture the real-world (e.g., some “work-
ing” days may in fact be national holidays, or
machines may be offline for maintenance in some
time period), which could cause our algorithms’
performance to be overestimated. A more exten-
sive validation under realistic operating scenarios
is therefore required in future works.

7 Conclusion

In this study, we addressed a flexible flow shop
scheduling problem with unrelated machines,
sequence-dependent setup times, limited storage
capacity, and specification constraints. We for-
mulated the problem as a mixed-integer linear
program (MILP) to generate production plans.
Because solving this MILP is NP-hard, we de-
veloped a greedy allocation (GA) procedure and
derived two heuristic algorithms—SAGA and
LRGA—based on it. Our computational experi-
ments demonstrate that these heuristics produce
near-optimal solutions within acceptable compu-
tation time, enabling manufacturers to generate
detailed daily schedules and make data-driven
decisions.

11



Figure 5: In-factory aluminum-window production flow, showing machine-level stage groups

Algorithm On-time Early Tardy Computing Time (seconds)

Manual Planning 9.1% 6.1% 84.8% N/A
SAGA 69.7% 30.3% 0.0% 1342.91
LRGA 53.0% 47.0% 0.0% 225.98

Table 4: Comparison of solution performance and computation time for the real-world case study.

Our MILP model transforms specification con-
straints into multiple stages, which assumes that
all products share the same constraint, a condi-
tion met by our industry partner. To generalize
this approach, a more sophisticated formulation
is needed to accommodate heterogeneous specifi-
cation requirements. Future work will also focus
on enhancing the GA’s effectiveness in scenarios
with severely constrained storage capacity, where
its current performance degrades.

References
[1] D. Danneberg, T. Tautenhahn, and F. Werner.

A comparison of heuristic algorithms for
flow shop scheduling problems with setup
times and limited batch size. Math. Comput.
Model., 29(9):101–126, May 1999.

[2] Henry Gabbay. Multi-Stage Production Plan-
ning. Management Science, 25(11):1138–
1148, November 1979.

[3] F. Hillier and G. Lieberman. Introduction to
Operations Research. McGraw Hill, USA,
10th edition, 2014.

[4] Muhammad Nawaz, E Emory Enscore Jr, and
Inyong Ham. A heuristic algorithm for the m-
machine, n-job flow-shop sequencing prob-
lem. Omega, 11(1):91–95, 1983.

[5] Yi Tan, Lars Mönch, and John W. Fowler. A
hybrid scheduling approach for a two-stage
flexible flow shop with batch processing ma-
chines. J. of Scheduling, 21(2):209–226,
April 2018.

12



Appendix

Notation Definition

T The set of periods.
S The set of stages.
I The set of orders.
G The set of stage groups.
Sg The set of stages within stage

group g.
δ The set of final stages within

each stage group.

Table 5: List of Sets

Notation Definition

L The maximum capacity that
a stage can allocate in a sin-
gle period.

Ris The amount of capacity re-
quired to produce order i at
stage s.

Di The period in which order i
is expected to be completed.

Kis Order storage space, repre-
senting the storage space re-
quired for order i at stage s.

Hg The storage capacity limit for
stage group g.

Pi The earliness penalty for de-
livering order i early by one
period.

Qi The tardiness penalty for de-
livering order i late by one
period.

Ais The cost of setting up stage s
to produce order i.

M A large constant.
α Weight parameter for the ear-

liness penalty in the objec-
tive function.

β Weight parameter for the tar-
diness penalty in the objec-
tive function.

Table 6: List of Parameters

Notation Definition

xtsi Capacity allocated at stage s
for order i in period t.

hprev
tsi Completion ratio before

stage s for order i at the
beginning of period t. This
represents the proportion of
order i completed at stage s
before period t begins.

hnext
tsi Completion ratio after stage

s for order i at the end of pe-
riod t. This represents the
proportion of order i com-
pleted at stage s by the end
of period t. The completed
order will then proceed to the
next stage for continued pro-
duction.

ytsi Binary decision variable for
production at stage s for or-
der i in period t. If the value
is 1, it indicates that order i
is being produced at stage s
in period t.

cit Delivery decision variable
for order i in period t. If the
value is 1, it indicates that or-
der i is delivered in period t.

zi The number of periods that
order i is delivered early.

wi The number of periods that
order i is delivered late.

Table 7: List of Decision Variables

13



Variable Description Data type

Date The date of the record Date
Warehouse Queue The orders queued but not yet pro-

cessed
List[Order]

Cutting Queue The orders waiting for cutting List[Order]
Inner Door Queue The inner-door orders awaiting

downstream processes
List[Order]

Sliding Window Queue The sliding-window orders awaiting
downstream processes

List[Order]

Pushing Window Queue The pushing-window orders await-
ing downstream processes

List[Order]

Table 8: Data format for each day’s record

Variable Description Data type

Customer Name Name of the customer string
Finished Whether the order was completed on that day boolean
Due Date Promised delivery date of the order Date
Items List of windows in the order, each as a tuple (win-

dow codename, quantity)
list[tuple(string, int)]

Table 9: Data format for each order

14


	Introduction
	Literature review
	Model
	Problem description
	Problem transformation
	Mathematical formulation

	Algorithm
	Greedy Allocation procedure (GA)
	Simulated Annealing based Greedy Allocation (SAGA)
	Linear Relaxation based Greedy Allocation (LRGA)

	Performance evaluation
	Experiment Setting
	An exact mixed-integer solver and a naïve heuristic algorithm
	Performance of SAGA and LRGA
	Computation time

	Case Study
	Factory overview
	Data description
	Comparison with historical production plans

	Conclusion

