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Unsupervised Learning

Unsupervised learning focuses on discovering patterns and structure from unlabeled
data. Common approaches include:

1. Clustering: Grouping samples based on similarity.
2. Dimensionality Reduction: Learning compact, low-dimensional representations

of high-dimensional data.
3. Generative Modeling: Producing new samples that resemble those in the

original dataset (to be discussed later).
Unsupervised learning is especially useful when datasets contain only features or input
variables, but no corresponding labels.
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Unsupervised Learning Applications

Document Clustering with LDA
Latent Dirichlet Allocation (LDA) is a generative probabilistic model used to uncover
hidden ”topics” in large collections of text documents. In this unsupervised setting, we
don’t know:

1. What the topics are
2. Which documents belong to which topics—there are no predefined correct

answers.
Because no ground truth is provided, LDA relies on unsupervised learning techniques
to identify meaningful patterns directly from the documents themselves.
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Unsupervised Learning Applications Cont.

Below is an LDA topic network generated using Quid Discover, showing clusters of
social media posts about the K-pop group NewJeans. Note that each topic is
discovered, rather than pre-defined.
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K-means Clustering

One of the most widely used clustering algorithms is K-means, which partitions
samples into K clusters by minimizing the within-cluster variation.
Suppose the within-cluster variation of cluster Ck is denoted by W(Ck). Our goal is to
find a set of clusters C = {C1,C2, . . . ,CK} that minimizes the total within-cluster
variation:

argmin
C

K∑
k=1

W(Ck).
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K-means Clustering (Cont.)

The within-cluster variation can be written as:

W(Ck) =
∑

xi∈Ck

∥xi − µk∥22,

where µk denotes the mean (centroid) of cluster Ck. Using this definition, the K-means
objective becomes:

argmin
C

K∑
k=1

∑
xi∈Ck

∥xi − µk∥22.
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Lloyd’s algorithm
We typically solve K-means using an iterative algorithm (often called Lloyd’s
algorithm):

1. Initialization: Choose K initial cluster centroids µ1, µ2, . . . , µK (e.g., randomly
select K data points).

2. Assignment step: For each data point xi, assign it to the closest centroid:

Ck = {xi : ∥xi − µk∥22 ≤ ∥xi − µj∥22 ∀j ∈ {1, . . . ,K}}.

3. Update step: Recompute each centroid as the mean of all points assigned to
that cluster:

µk =
1

|Ck|
∑

xi∈Ck

xi, k = 1, . . . ,K.

4. Repeat: Alternate between the assignment step and the update step until
convergence.
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Data Preparation
We can generate random points using NumPy via the function
np.random.uniform(0, v, n), which samples n values uniformly from the range
[0,v] These points can then be visualized on a scatter plot, as shown below:
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Applying K-means Clustering
We can apply K-means clustering by creating a
sklearn.cluster.KMeans(n_clusters=2) model and fitting it to our dataset. The
resulting visualization shows the two clusters along with their corresponding centroids:
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Discussion on K-means

Here are some important questions to consider:
1. How do we choose the number of clusters K?
2. Is the algorithm stable? (i.e., does the same input always produce the same

clustering result?)
3. How do we evaluate the quality of the clustering results?
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t-SNE

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a dimensionality reduction
technique designed for visualizing high-dimensional data. It was developed by Laurens
van der Maaten in 2008, a former student of Turing Award laureate Geoffrey Hinton
and currently a researcher at Anthropic. For details, refer to the original paper,
Visualizing Data using t-SNE published in JMLR (with over 62k citations).
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t-SNE (Cont.)

For each point xi, t-SNE defines a conditional probability that xj is a neighbor of xi:

pj|i =
exp

(
−∥xi − xj∥2/2σ2

i
)∑

k̸=i exp
(
−∥xi − xk∥2/2σ2

i
) .

After computing all pj|i, the joint probabilities are symmetrized:

pij =
pj|i + pi|j

2N .
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t-SNE (Cont.)

How is σi chosen?
t-SNE sets a separate σi for each point by matching a user-defined perplexity value.
The perplexity of the distribution Pj|i is defined as:

Perp(Pj|i) = 2H(Pj|i) H(Pj|i) = −
∑

j
pj|i log2 pj|i.

For each xi, t-SNE performs a binary search on σi such that:

Perp(Pj|i) = desired perplexity.

This ensures that each point has a similar effective number of neighbors.
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t-SNE (Cont.)

Given low-dimensional embeddings (y1, . . . , yN), similarities are computed using a
Student t-distribution with one degree of freedom:

qij =

(
1 + ∥yi − yj∥2

)−1∑
k ̸=l (1 + ∥yk − yl∥2)−1 .
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t-SNE (Cont.)
t-SNE finds low-dimensional embeddings {yi} by minimizing the KL divergence
between the high-dimensional and low-dimensional similarity distributions:

L = KL(P ∥Q) =
∑

i

∑
j

pij log pij
qij

.

This objective can be optimized using gradient descent. The gradient with respect to a
point yi is:

∂L
∂yi

= 4
∑

j
(pij − qij)(yi − yj)(1 + ∥yi − yj∥2)−1.

The embedding is then updated iteratively, with η as the learning rate.

y(t+1)
i = y(t)i − η

∂L
∂y(t)i

,
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Preparing the MNIST Dataset
We use the MNIST dataset to illustrate the performance of t-SNE. MNIST consists of
grayscale digit images with a high-dimensional input space (28× 28 = 784 features).
Use torchvision.datasets.MNIST to load the dataset, and apply
torchvision.transforms to normalize the pixel values before applying t-SNE.
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Applying t-SNE
We can apply t-SNE using sklearn.manifold.TSNE. The visualization below shows
the 2D embedding, with points colored according to their labels:

Fundamentals of Unsupervised Learning November 2025 18 / 20



Discussion on t-SNE

Here are some important questions to consider:
1. How does t-SNE compare to traditional methods such as PCA?
2. What is the computational complexity of t-SNE?
3. How can we evaluate the quality of the dimensionality reduction results?
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Remarks

Unsupervised learning is a powerful technique, especially when ground-truth labels are
unavailable. In traditional machine learning, unsupervised methods are commonly
applied to clustering and dimensionality reduction.
In modern deep learning, however, self-supervised learning has emerged as a major
approach for leveraging large amounts of unlabeled data, enabling models to learn
representations and generate text or images without explicit annotations.
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